Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Immunity ; 54(10): 2399-2416.e6, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1364126

ABSTRACT

With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Amino Acid Motifs , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , COVID-19/prevention & control , COVID-19/virology , Epitopes/chemistry , Epitopes/metabolism , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/metabolism , Mice , Neutralization Tests , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
mSphere ; 6(4): e0045021, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1341307

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity was assessed for 3,066 individuals visiting hospitals in St. Louis, Missouri, during July 2020, November 2020, or January 2021. Seropositivity in children increased from 5.22% in July to 21.16% in January. In the same time frame, seropositivity among adults increased from 4.52% to 19.03%, prior to initiation of mass vaccination. IMPORTANCE This study determined the percentage of children and adult samples from the St. Louis metropolitan area in Missouri with SARS-CoV-2 antibodies during three collection periods spanning July 2020 to January 2021. By January 2021, 20.68% of the tested individuals had antibodies. These results show the evolution of the SARS-CoV-2 pandemic in St. Louis, Missouri, and provide a snapshot of the extent of infection just prior to the start of mass vaccination.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Missouri , Pandemics/prevention & control , Seroepidemiologic Studies , Young Adult
4.
mSphere ; 6(1)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1063057

ABSTRACT

Reported coronavirus disease 2019 (COVID-19) case counts likely underestimate the true prevalence because mild or asymptomatic cases often go untested. Here, we use a sero-survey to estimate the seroprevalence of IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the St. Louis, MO, metropolitan area in a symptom-independent manner. Five hundred three adult and 555 pediatric serum/plasma samples were collected from patients presenting to Barnes-Jewish Hospital or St. Louis Children's Hospital between 14 April 2020 and 12 May 2020. We developed protocols for in-house enzyme-linked immunosorbent assays (ELISAs) using spike and nucleoprotein and used the assays to estimate a seroprevalence rate based on our samples. Overall IgG seropositivity was estimated to be 1.71% (95% credible interval [CI], 0.04% to 3.38%) in pediatric samples and 3.11% (95% CI, 0.92% to 5.32%) in adult samples. Seropositivity was significantly lower in children under 5 years of age than in adults, but rates between adults and children aged 5 or older were similar. Of the 176 samples tested from children under 4 years of age, none were positive.IMPORTANCE This study determined the percentages of both children and adult samples from the greater St. Louis metropolitan area who had antibodies to SARS-CoV-2 in late April to early May 2020. Approximately 1.7 to 3.1% of the tested individuals had antibodies, indicating that they had previously been infected by SARS-CoV-2. These results demonstrate that the extent of infection was about 10 times greater than the number of confirmed cases at that time. Furthermore, it demonstrated that by 5 years of age, children were infected to an extent similar to that of adults.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , COVID-19/epidemiology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Male , Middle Aged , Missouri/epidemiology , Seroepidemiologic Studies , Young Adult
5.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-720448

ABSTRACT

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Subject(s)
Coronavirus Infections/immunology , Immunogenicity, Vaccine , Pneumonia, Viral/immunology , Viral Vaccines/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Viral Vaccines/administration & dosage
6.
Cell Host Microbe ; 28(3): 465-474.e4, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-710174

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections, and an effective vaccine is critical to mitigate coronavirus-induced disease 2019 (COVID-19). Previously, we developed a replication-competent vesicular stomatitis virus (VSV) expressing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Here, we show that vaccination with VSV-eGFP-SARS-CoV-2 generates neutralizing immune responses and protects mice from SARS-CoV-2. Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high antibody titers that neutralize SARS-CoV-2 and target the receptor binding domain that engages human angiotensin-converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice that expressed human ACE2 and were immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung, indicating protection against pneumonia. Passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals also protects naive mice from SARS-CoV-2 challenge. These data support development of VSV-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vesicular stomatitis Indiana virus/genetics , Viral Vaccines/genetics , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Genetic Vectors , Green Fluorescent Proteins/genetics , Host Microbial Interactions/immunology , Humans , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Virus/genetics , SARS-CoV-2 , Translational Research, Biomedical , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology , Vero Cells , Vesicular stomatitis Indiana virus/immunology , Viral Vaccines/immunology , Viral Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL